POWER SYSTEMS |
NEWS EVENTS |
BOOKS BLOG |
UNIVERSITIES NIKOLA TESLA |
LINKS CONTACT |
POWER SYSTEMS |
||
HISTORY In 1881, two electricians built the world's first power system at Godalming in England. It was powered by two water wheels and produced an alternating current that in turn supplied seven Siemens arc lamps at 250 volts and 34 incandescent lamps at 40 volts. However, supply to the lamps was intermittent and in 1882 Thomas Edison and his company, Edison Electric Light Company, developed the first steam-powered electric power station on Pearl Street in New York City. The Pearl Street Station initially powered around 3,000 lamps for 59 customers. The power station generated direct current and operated at a single voltage. Direct current power could not be transformed easily or efficiently to the higher voltages necessary to minimize power loss during long-distance transmission, so the maximum economic distance between the generators and load was limited to around half a mile (800 m). That same year in London, Lucien Gaulard and John Dixon Gibbs demonstrated the "secondary generator"—the first transformer suitable for use in a real power system. The practical value of Gaulard and Gibbs' transformer was demonstrated in 1884 at Turin where the transformer was used to light up 40 kilometers (25 miles) of railway from a single alternating current generator. Despite the success of the system, the pair made some fundamental mistakes. Perhaps the most serious was connecting the primaries of the transformers in series so that active lamps would affect the brightness of other lamps further down the line. In 1885, Ottó Titusz Bláthy working with Károly Zipernowsky and Miksa Déri perfected the secondary generator of Gaulard and Gibbs, providing it with a closed iron core and its present name: the "transformer". The three engineers went on to present a power system at the National General Exhibition of Budapest that implemented the parallel AC distribution system proposed by a British scientist[a] in which several power transformers have their primary windings fed in parallel from a high-voltage distribution line. The system lit more than 1000 carbon filament lamps and operated successfully from May until November of that year. Also in 1885 George Westinghouse, an American entrepreneur, obtained the patent rights to the Gaulard-Gibbs transformer and imported a number of them along with a Siemens generator, and set his engineers to experimenting with them in hopes of improving them for use in a commercial power system. In 1886, one of Westinghouse's engineers, William Stanley, independently recognized the problem with connecting transformers in series as opposed to parallel and also realized that making the iron core of a transformer a fully enclosed loop would improve the voltage regulation of the secondary winding. Using this knowledge he built a multi-voltage transformer-based alternating-current power system serving multiple homes and businesses at Great Barrington, Massachusetts in 1886. The system was unreliable and short-lived, though, due primarily to generation issues. However, based on that system, Westinghouse would begin installing AC transformer systems in competition with the Edison Company later that year. In 1888, Westinghouse licensed Nikola Tesla's patents for a polyphase AC induction motor and transformer designs. Tesla consulted for a year at the Westinghouse Electric & Manufacturing Company's but it took a further four years for Westinghouse engineers to develop a workable polyphase motor and transmission system. By 1889, the electric power industry was flourishing, and power companies had built thousands of power systems (both direct and alternating current) in the United States and Europe. These networks were effectively dedicated to providing electric lighting. During this time the rivalry between Thomas Edison and George Westinghouse's companies had grown into a propaganda campaign over which form of transmission (direct or alternating current) was superior, a series of events known as the "war of the currents". In 1891, Westinghouse installed the first major power system that was designed to drive a 100 horsepower (75 kW) synchronous electric motor, not just provide electric lighting, at Telluride, Colorado. On the other side of the Atlantic, Mikhail Dolivo-Dobrovolsky and Charles Eugene Lancelot Brown, built the first long-distance (175 kilometers (109 miles)) high-voltage (15 kV, then a record) three-phase transmission line from Lauffen am Neckar to Frankfurt am Main for the Electrical Engineering Exhibition in Frankfurt, where power was used to light lamps and run a water pump. In the United States the AC/DC competition came to an end when Edison General Electric was taken over by their chief AC rival, the Thomson-Houston Electric Company, forming General Electric. In 1895, after a protracted decision-making process, alternating current was chosen as the transmission standard with Westinghouse building the Adams No. 1 generating station at Niagara Falls and General Electric building the three-phase alternating current power system to supply Buffalo at 11 kV. In the United Kingdom, Charles Merz, of the Merz & McLellan consulting partnership, built the Neptune Bank Power Station near Newcastle upon Tyne in 1901,and by 1912 had developed into the largest integrated power system in Europe.Merz was appointed head of a parliamentary committee and his findings led to the Williamson Report of 1918, which in turn created the Electricity (Supply) Act 1919. The bill was the first step towards an integrated electricity system. The Electricity (Supply) Act 1926 led to the setting up of the National Grid. The Central Electricity Board standardized the nation's electricity supply and established the first synchronized AC grid, running at 132 kilovolts and 50 hertz. This started operating as a national system, the National Grid, in 1938. In the United States in the 1920s, utilities formed joint-operations to share peak load coverage and backup power. In 1934, with the passage of the Public Utility Holding Company Act (USA), electric utilities were recognized as public goods of importance and were given outlined restrictions and regulatory oversight of their operations. The Energy Policy Act of 1992 required transmission line owners to allow electric generation companies open access to their network and led to a restructuring of how the electric industry operated in an effort to create competition in power generation. No longer were electric utilities built as vertical monopolies, where generation, transmission and distribution were handled by a single company. Now, the three stages could be split among various companies, in an effort to provide fair access to high voltage transmission.The Energy Policy Act of 2005 allowed incentives and loan guarantees for alternative energy production and advance innovative technologies that avoided greenhouse emissions. In France, electrification began in the 1900s, with 700 communes in 1919, and 36,528 in 1938. At the same time, these close networks began to interconnect: Paris in 1907 at 12 kV, the Pyrénées in 1923 at 150 kV, and finally almost all of the country interconnected by 1938 at 220 kV. In 1946, the grid was the world's most dense. That year the state nationalised the industry, by uniting the private companies as Électricité de France. The frequency was standardised at 50 Hz, and the 225 kV network replaced 110 kV and 120 kV. Since 1956, service voltage has been standardised at 220/380 V, replacing the previous 127/220 V. During the 1970s, the 400 kV network, the new European standard, was implemented. Developments in power systems continued beyond the nineteenth century. In 1936 the first experimental high voltage direct current (HVDC) line using mercury arc valves was built between Schenectady and Mechanicville, New York. HVDC had previously been achieved by series-connected direct current generators and motors (the Thury system) although this suffered from serious reliability issues. The first solid-state metal diode suitable for general power uses was developed by Ernst Presser at TeKaDe in 1928. It consisted of a layer of selenium applied on an aluminum plate. In 1957, a General Electric research group developed the first thyristor suitable for use in power applications, starting a revolution in power electronics. In that same year, Siemens demonstrated a solid-state rectifier, but it was not until the early 1970s that solid-state devices became the standard in HVDC, when GE emerged as one of the top suppliers of thyristor-based HVDC. In 1979, a European consortium including Siemens, Brown Boveri & Cie and AEG realized the record HVDC link from Cabora Bassa to Johannesburg, extending more than 1,420 kilometers (880 miles) that carried 1.9 GW at 533 kV. In recent times, many important developments have come from extending innovations in the information and communications technology (ICT) field to the power engineering field. For example, the development of computers mea AC/DC Electricity was first introduced to New York in the late 1870s. Edison's incandescent lamp had created an astonishing demand for electric power. And his DC power station on Pearl Street in lower Manhattan was quickly becoming a monopoly. On the streets, single poles carried dozens of crooked crossbeams supporting sagging wires, and the exposed electrical wiring was a constant danger. Unsuspecting children would scale the poles only to meet an untimely electrical demise. The residents of Brooklyn became so accustomed to dodging shocks from electric trolley tracks that their baseball team was called the Brooklyn Dodgers. In spite of the perils, wealthy New Yorkers rushed to have their homes wired, the most important being the banker, J.P. Morgan, who had invested heavily in Edison. It was into this state of affairs that the 6'4" immigrant from Eastern Europe entered Edison's office. Thrilled and terrified to meet his hero, Tesla handed Edison his letter of recommendation: It read: "My Dear Edison: I know two great men and you are one of them. The other is this young man!" Tesla proceeded to describe the engineering work he had done, and his plans for an alternating current motor. Edison knew little of alternating current and did not care to learn more about it. In short, AC power sounded like competition to Edison. But there was something different about Tesla, and Edison immediately hired him to make improvements in his DC generation plants. Tesla claimed that Edison promised him $50,000 if he succeeded, perhaps thinking it an impossible undertaking. But the potential of so much money appealed mightily to the impoverished immigrant. Both Tesla and Edison shared a common trait of genius in that neither of them seemed to need much sleep. Edison could go for days, taking occasional catnaps on a sofa in his office. Tesla claimed that his working hours at the Edison Machine Works were 10:30 a.m. till 5 a.m. the next day. Even into old age Tesla said he only slept two or three hours a night. That's where the similarity ended. Tesla relied on moments of inspiration, perceiving the invention in his brain in precise detail before moving to the construction stage. Edison was a trial and error man who described invention as five percent inspiration and 95 percent perspiration. Edison was self-taught. Tesla had a formal European education. It was only a matter of time until their differences would lead to conflict. Several months after Edison employed him, Tesla announced that his work was successfully completed. When Tesla asked to be paid, however, Edison seemed astonished. He explained that the offer of $50,000 had been made in jest. "When you become a full-fledged American you will appreciate an American joke," Edison said. Shocked and disgusted, Tesla immediately resigned. Word began to spread that a foreigner of unusual talent was digging ditches to stay alive. Investors approached Tesla and asked him to develop an improved method for arc lighting. Although this was not the opportunity he had hoped for, the group was willing to finance the Tesla Electric Light Company. The proud new owner set to work and invented a unique arc lamp of beautiful design and efficiency. Unfortunately, all of the money earned went to the investors and all Tesla got was a stack of worthless stock certificates. But his luck was about to change. Mr. A.K. Brown of the Western Union Company, agreed to invest in Tesla's idea for an AC motor. In a small laboratory just a short distance from Edison's office, Tesla quickly developed all the components for the system of AC power generation and transmission that is used universally throughout the world today. "The motors I build there," said Tesla, "were exactly as I imagined them. I made no attempt to improve the design, but merely reproduced the pictures as they appeared to my vision and the operation was always as I expected." The battle to produce his motor was over. But the struggle to introduce it commercially was only just beginning. War of the Currents In November and December of 1887, Tesla filed for seven U.S. patents in the field of polyphase AC motors and power transmission. These comprised a complete system of generators, transformers, transmission lines, motors and lighting. So original were the ideas that they were issued without a successful challenge, and would turn out to be the most valuable patents since the telephone. An adventurous Pittsburgh industrialist named George Westinghouse, inventor of railroad air brakes, heard about Tesla's invention and thought it could be the missing link in long-distance power transmission. He came to Tesla's lab and made an offer, purchasing the patents for $60,000, which included $5,000 in cash and 150 shares of stock in the Westinghouse Corporation. He also agreed to pay royalties of $2.50 per horsepower of electrical capacity sold. With more inventions in mind, Tesla quickly spent half of his newfound wealth on a new laboratory. With the breakthrough provided by Tesla's patents, a full-scale industrial war erupted. At stake, in effect, was the future of industrial development in the United States, and whether Westinghouse's alternating current or Edison's direct current would be the chosen technology. It was at this time that Edison launched a propaganda war against alternating current. Westinghouse recalled: I remember Tom [Edison] telling them that direct current was like a river flowing peacefully to the sea, while alternating current was like a torrent rushing violently over a precipice. Imagine that! Why they even had a professor named Harold Brown who went around talking to audiences... and electrocuting dogs and old horses right on stage, to show how dangerous alternating current was. Meanwhile, a murderer was about to be executed in the first electric chair at New York's Auburn State Prison. Professor Brown had succeeded in illegally purchasing a used Westinghouse generator in order to demonstrate once and for all the extreme danger of alternating current. The guinea pig was William Kemmler, a convicted ax-murderer, who died horribly on August 6, 1890, in "an awful spectacle, far worse than hanging." The technique was later dubbed "Westinghousing." In spite of the bad press, good things were happening for Westinghouse and Tesla. The Westinghouse Corporation won the bid for illuminating The Chicago World's Fair, the first all-electric fair in history. The fair was also called the Columbian Exposition — in celebration of the 400th Anniversary of Columbus discovering America. Up against the newly formed General Electric Company (the company that had taken over the Edison Company), Westinghouse undercut GE's million-dollar bid by half. Much of GE's proposed expenses were tied to the amount copper wire necessary to utilize DC power. Westinghouse's winning bid proposed a more efficient, cost-effective AC system. The Columbian Exposition opened on May 1, 1893. That evening, President Grover Cleveland pushed a button and a hundred thousand incandescent lamps illuminated the fairground's neoclassical buildings. This "City of Light" was the work of Tesla, Westinghouse and twelve new thousand-horsepower AC generation units located in the Hall of Machinery. In the Great Hall of Electricity, the Tesla polyphase system of alternating current power generation and transmission was proudly displayed. For the twenty-seven million people who attended the fair, it was dramatically clear that the power of the future was AC. From that point forward more than 80 percent of all the electrical devices ordered in the United States were for alternating current. Harnessing Niagara The Niagara Falls Power Project was an act of pure technological optimism. Americans had dreamed of pressing the Falls into "an honest day's work" since the first pioneer sawmill had been built there in 1725. But schemes for extracting power had never been adequately conceived. Since his childhood, Tesla himself had dreamed of harnessing the power of the great natural wonder. And in late 1893, his dream became a reality, when Westinghouse was awarded the contract to create the powerhouse. The contract came as a result of a failed competition spearheaded by the international Niagara Falls Commission. The commission, charged with planning the power project, had solicited proposals from experts around the world only to reject them all. The schemes ranged from a system using pneumatic pressure to one requiring ropes, springs and pulleys. And there were proposals to transmit DC electricity, one endorsed by Edison. At the head of the commission was Lord Kelvin, the famous British physicist, who had been as opposed to alternating current as Edison until he attended the Chicago Exposition. Now, a strong convert to AC, Kelvin and his commission asked Westinghouse to use alternating current to harness the power of the falls. The construction period was traumatic for engineers, mechanics and workers, but it weighed most heavily on investors. Project backers included several of the wealthiest men in America and Europe, including: J. P. Morgan, John Jacob Astor, Lord Rothschild, and W. K. Vanderbilt. After a five-year nightmare of doubt and financial crises, the project approached completion. Tesla had not doubted the results for a moment. The investors, however, were not at all sure the system would work. While the machines were running smoothly in Tesla's three-dimensional imagination, they were still unproved and expensive. But the worries were unwarranted. When the switch was thrown, the first power reached Buffalo at midnight, November 16, 1896. The Niagara Falls Gazette reported that day, "The turning of a switch in the big powerhouse at Niagara completed a circuit which caused the Niagara River to flow uphill." The first one thousand horsepower of electricity surging to Buffalo was claimed by the street railway company, but already the local power company had orders from residents for five thousand more. Within a few years the number of generators at Niagara Falls reached the planned ten, and power lines were electrifying New York City. Broadway was ablaze with lights; the elevated, street railways, and subway system rumbled; and even the Edison systems converted to alternating current. But there were complications. Both the Westinghouse and General Electric corporations were morally and financially drained by the War of the Currents. Years of litigation, the absorption of Edison's company and others by professional managers at GE, and the financial teetering of Westinghouse all contributed to a takeover. This was the era of the Robber Barons, and one of the biggest was ready to make his move. J. P. Morgan, hoping to bring all U.S. hydroelectric power under his control, proceeded to manipulate stock market forces with the intention of starving out Westinghouse and buying the Tesla patents. Thanks in part to Tesla, this did not happen. Westinghouse called on the inventor, pleading for an escape from the initial contract that gave Tesla generous royalties. In a magnanimous and history-making gesture, Tesla said he tore up the contract. He was, after all, grateful to the one man who had believed in his invention. And he was convinced that greater inventions lay ahead. The Westinghouse Electric Company was saved for future triumphs. Tesla, although sharing the glory, was left forever afterward in recurring financial difficulties.
| |
|